Efficient source and mask optimization with augmented Lagrangian methods in optical lithography
نویسندگان
چکیده
منابع مشابه
Pixelated source mask optimization for process robustness in optical lithography.
Optical lithography has enabled the printing of progressively smaller circuit patterns over the years. However, as the feature size shrinks, the lithographic process variation becomes more pronounced. Source-mask optimization (SMO) is a current technology allowing a co-design of the source and the mask for higher resolution imaging. In this paper, we develop a pixelated SMO using inverse imagin...
متن کاملParametric source-mask-numerical aperture co-optimization for immersion lithography
Source mask optimization (SMO) is a leading resolution enhancement technique in immersion lithography at the 45-nm node and beyond. Current SMO approaches, however, fix the numerical aperture (NA), which has a strong impact on the depth of focus (DOF). A higher NA could realize a higher resolution but reduce the DOF; it is very important to balance the requirements of NA between resolution and ...
متن کاملAugmented Lagrangian Methods and Proximal Point Methods for Convex Optimization
We present a review of the classical proximal point method for nding zeroes of maximal monotone operators, and its application to augmented Lagrangian methods, including a rather complete convergence analysis. Next we discuss the generalized proximal point methods, either with Bregman distances or -divergences, which in turn give raise to a family of generalized augmented Lagrangians, as smooth...
متن کاملRobust source and mask optimization compensating for mask topography effects in computational lithography.
Mask topography effects need to be taken into consideration for a more accurate solution of source mask optimization (SMO) in advanced optical lithography. However, rigorous 3D mask models generally involve intensive computation and conventional SMO fails to manipulate the mask-induced undesired phase errors that degrade the usable depth of focus (uDOF) and process yield. In this work, an optim...
متن کاملAugmented Lagrangian Duality and Nondifferentiable Optimization Methods in Nonconvex Programming
Abstract. In this paper we present augmented Lagrangians for nonconvex minimization problems with equality constraints. We construct a dual problem with respect to the presented here Lagrangian, give the saddle point optimality conditions and obtain strong duality results. We use these results and modify the subgradient and cutting plane methods for solving the dual problem constructed. Algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2013
ISSN: 1094-4087
DOI: 10.1364/oe.21.008076